

MICKLEOVER PRIMARY SCHOOL

Written Calculation Policy
2019

At Mickleover Primary, we recognise the importance of a common and progressive approach to the introduction of standard written methods, to ensure that children have secure calculation skills that are appropriate to their understanding of number. This policy outlines how written calculations are taught throughout the school based on a Mastery Approach that uses a concrete, pictorial and abstract approach to secure and deepen understanding. This approach recognises that in order for pupils to understand abstract concepts, they must first learn mathematical concepts through the use of concrete resources and pictorial representation.

CONCRETE

ABSTRACT

Concrete is the 'doing' stage, using concrete objects to solve problems. It brings concepts to life by allowing children to handle physical objects themselves.

Pictorial is the 'seeing' stage, using representations of the objects involved in maths problems. This stage encourages children to make a mental connection between the physical object and abstract levels of understanding, by drawing or looking at pictures, circles, diagrams or models which represent the objects in the problem.

Abstract is the 'symbolic' stage, where children are able to use abstract symbols to model and solve maths problems.

As pupils progress in their maths, they become ready to handle more formal written methods that in many cases increase efficiency. However, pupils should not be moved onto these methods before their conceptual understanding of each operation is sound. Also, pupils should not be moved on automatically to the next calculation strategy - the policy should be used with professional judgement of what is appropriate for the pupils in each class. Although the focus of this policy is on pencil and paper procedures, it is important to recognise that the ability to calculate mentally lies at the heart of numeracy. Mental calculation should be seen as complementary to written recordings, as in every written method there is an element of mental processing. Supporting all calculation work should be a sound understanding of estimation and checking the reasonableness of an answer. Children should be taught to use rounding to support estimation and to check answers against the question to ensure it is reasonable and fits the real life situation (especially in the case of division and remainders).

Written ADDITION methods using a CONCRETE PICTORIAL and ABSTRACT approach. Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.		
Foundation 2		
Concrete	Pictorial	Abstract
Children find the total number of objects by combining two parts and counting all of them. - Through practical activities, using fingers and through discussion they will begin to use the vocabulary involved in addition. 'You have five apples and I have two apples. How many apples altogether?' - They will record pictorially then numerically $5+2=7$ apples	Children represent cubes or other objects using dots, circles crosses etc. Each part is shown on the part whole model.	Children represent cubes or other objects using dots, circles crosses etc. Each part is shown on the part whole model.
Children add 2 single digit numbers by counting on. - Through practical activities, children to begin counting on, starting from the highest number. $\mathrm{O}^{\mathrm{O}}+\mathrm{O}_{\mathrm{O}}^{\mathrm{O}} \longrightarrow 4+2=6$ - Using a number line Or numicon counting from the biggest number. $4+2=6$		
Children will find one more than a given number. - Through songs, rhymes and practical activities children develop a sense of number. - Children will use number line to find one more than a given number		

Written ADDITION methods using a CONCRETE PICTORIAL and ABSTRACT approach.

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Year 1		
Concrete	Pictorial	Abstract
Children, read, write and interpret mathematical statements involving addition (+) and the equals (=). - Through practical activities, using rods, cubes, numicom, number beads, number lines and 100 squares. $6+5$ makes 11	- Using a bar model or tens frame to represent the addition $4+2=$ $6+5=$	- Using an abstract numberline (in head) What is 2 more than 4 What is the sum of 2 and 4 What is the total of 2 and 4 - using number bonds and related addition facts within 20 which have been learned.
Children add one-digit and two-digit numbers within 20, including zero Using practical equipment children combine groups, counting from the largest	- Using a number line to add two numbers together, encouraging children to start from the largest number. - Children solve missing number problems by counting on from the given number. eg $10+$ \qquad $=16$ \qquad $10+$ \square $=16$	

Written ADDITION methods using a CONCRETE PICTORIAL and ABSTRACT approach.

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Year 2		
Concrete	Pictorial	Abstract
Children solve problems with addition using concrete objects as used in foundation stage 2 and Year 1. Children will learn to add -: 1. A two digit number and ones 2. A two digit number and tens 3. Two two-digit numbers 4. Three one-digit numbers - Using Tens and Ones apparatus children add by combining groups, counting from the largest. (TO +0 and TO +TO base 10 with no exchange) - Using Tens and Ones apparatus children add by combining groups, where 10 ones are exchanged for a Ten.	Children solve problems with addition using pictorial representations as used in foundation stage 2 and Year 1. - Using place value knowledge children combine Tens and Ones to add. - Using an empty number line to add two-digit numbers. $34+23=57$ - Bar models are used to show pictorial representations	- Using place value knowledge children combine Tens and Ones to add in head. $\begin{aligned} & 30+20=50 \\ & 5+5=10 \\ & 50+10+1=61 \end{aligned}$

Written ADDITION methods using a CONCRETE PICTORIAL and ABSTRACT approach.

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Addition of fractions

Year 3
Use bar models to add fractions with the same denominator within one whole

We can use this model to calculate $\frac{3}{8}+\frac{1}{8}=\frac{4}{8}$

Year 4
Use bar models to add fractions of the same denominators

Year 5
Use bar models to add fractions with same denominators and multiples of the same number

$\frac{3}{5}+\frac{4}{5}=\frac{7}{5}=1 \frac{2}{5}$

(2) 몸 $\begin{aligned} & \square \\ & \\ & \square\end{aligned} \frac{1}{2}+\frac{1}{8}=\frac{4}{8}+\frac{1}{8}=\frac{5}{8}$

$\frac{1}{4}+\frac{3}{8}=\frac{2}{8}+\frac{3}{8}=\frac{5}{8}$

Year 6
$2 \frac{1}{4}+1 \frac{1}{6}=2 \frac{3}{12}+1 \frac{2}{12}=3 \frac{5}{12}$

Pupils should add fractions with different denominators and mixed numbers using the concept of equivalent fractions.
Leading to abstract method of
using common denominators

Conceptual Variation; different ways to ask children to solve $21+34$

Written SUBTRACTION methods using a CONCRETE PICTORIAL AND ABSTRACT approach

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Foundation 2		
Concrete	Pictorial	Abstract
Children will engage in a variety of counting songs, rhymes and practical activities to develop a sense of number. Children will find one less than a given number. - In practical activities, using objects and fingers they will begin to use the vocabulary involved in subtraction 'You have five apples and I eat one apples. How many apples left?' - They will record pictorially then numerically 5-1 $=4$ apples		
Children subtract from 2 single digit numbers, by counting back to find the answer practically. - Using objects then pictures, children subtract a single digit number 09ϕ 5 subtract $3=2$ - Using numicon children represent the subtraction by taking away covering the number.	- Children draw the concrete resources and cross out the correct amount. Bar models are also used. இ®O $x\|x\| x$ - Using a number line children count back below the line to show subtraction.	- Part Whole models show the equation for children to find the correct answer

Mickleover Primary Calculation Policy

Written SUBTRACTION methods using a CONCRETE PICTORIAL AND ABSTRACT approach

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Year 1		
Concrete	Pictorial	Abstract
Children read, write \& interpret mathematical statements involving subtraction (-) \& equals (=). - Through practical activities, using rods, cubes, numicom, number beads, number lines and 100 squares. $0^{0} \longrightarrow$ $5-3=2$ Children subtract one-digit \& two-digit numbers to 20 , including zero. - Children find the difference using subtraction. Calculate the difference between 8 and 5 .	- Children draw cubes/counters and represent subtraction on bar models. - Children present the ten frame pictorially and discuss what they did to make 10. Children use a number line to subtract a number counting back below the line.	- Children use number bonds and related addition facts within 20 which have been learned.

Written SUBTRACTION methods using a CONCRETE PICTORIAL AND ABSTRACT approach
 Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Year 2		
Concrete	Pictorial	Abstract
Childen subtract numbers using concrete objects and pictorial representations as used in foundation and year 1. Children will learn to subtract -: - A two digit number and ones - A two digit number and tens - Two two-digit numbers - Using place value knowledge children subtract Iens and Ones. (No exchange) 48-7 = - Using Tens and Ones apparatus children subtract by exchanging ten ones for a Ten. 41-26	- Using place value knowledge, children subtract using a number line $47-23=24$ - Using place value knowledge, children subtract Tens and Ones. (No exchange) 48-7= - Using Tens and Ones apparatus children subtract by exchanging ten ones for a Ten	- Using knowledge of addition and subtraction families and the inverse relationship of addition and subtraction. $\begin{array}{lll} 3+2=5 & 2+3=5 & \text { Number } \\ 5-2=3 & 5-3=2 & \text { families } \end{array}$ - Using Inverse knowledge $48+36=84 \text { so } 84-36=48$ - Use partitioning of the number being subtracted before carrying outthe subtraction

Subtraction of fractions

Year 3	Year 4	Year 5	Year 6
Subtract fractions with the same denominator within one whole $5 / 7-2 / 7=3 / 7$	Subtract fractions with the same denominator Here are two bar models to calculate $\frac{7}{8}-\frac{3}{8}$ \square	Subtract fractions with the same denominator and multiples of the same number$\frac{1}{3}-\frac{1}{12}=\frac{3}{12}$Step 1 Step2 Step3 $\frac{1}{3}$ $\frac{4}{3}$ $\frac{1}{3}-\frac{1}{12}=\frac{3}{12}$ $3 \frac{5}{8}-2 \frac{1}{4}=1 \frac{3}{8}$$\square$$\frac{5}{8}-\frac{1}{4}=\frac{5}{8}-\frac{2}{8}=\frac{3}{8}$$3-2=1$	Subtract fractions with different denominators Building on Y 5 methods to abstract methods by finding common denominator $\frac{3}{4}-\frac{2}{3}=\frac{9}{12}-\frac{8}{12}=\frac{1}{12}$

Conceptual variation; different ways to ask children to solve 391-186

Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend?	$\square=391-186$
Calculate the difference between 391 and and 185	What is 186 less than $391 ?$

Missing digit calculations

Written MULTIPLICATION methods using a CONCRETE, PICTORIAL and ABSTRACT approach Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.		
Foundation 2		
Concrete	Pictorial	Abstract
Children solve problems involving doubling. - In practical activities and through discussion children will begin to use the vocabulary of multiplication - groups, lots, double. - Through practical activities solve problems including doubling.	Children solve problems involving doubling. They will record pictorially -: 'You have 3 lollies and your friend gives you 3 more. How many do you have altogether?	Children solve problems involving doubling. They will record numerically -: $3+3=6$ lollies Double 3 is 6

Written MULTIPLICATION methods using a CONCRETE, PICTORIAL and ABSTRACT approach
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Year 1}

\hline Concrete \& Pictorial \& Abstract

\hline \begin{tabular}{l}
Children solve one-step problems involving multiplication using concrete objects, pictorial representations

- Children count in 2's, 5's and 10's.

- Children continue to use the vocabulary of multiplication groups, lots, double.

- Children recognise doubling as adding the same number again.

Children will put objects and pictures into repeated groups to count.

3×4

$4+4+4$

There are 3 equal groups, with 4 in each group.

 \&

Children solve one-step problems involving multiplication using concrete objects, pictorial representations

- Children represent the practical resources in a picture or use a bar model

 \&

Children solve one-step problems involving multiplication using concrete objects, pictorial representations

- Children write multiplication as a stem sentence.

3 groups of $4=12$
\end{tabular}

\hline
\end{tabular}

Written MULTIPLICATION methods using a CONCRETE, PICTORIAL and ABSTRACT approach
 Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Year 2

Concrete

Children solve problems with multiplication using concrete objects as used in foundation stage 2 and Year 1.

Children solve multiplication problems practically, using concrete objects and arrays

- Children solve multiplication calculations practically through repeated addition.
$5+5+5$
$3 \times 5=3$
3 groups of $5=15$
5

5

Pictoria

Children solve problems with multiplication using pictorial representations as used in foundation stage 2 and Year 1.

Children solve multiplication problems, pictorially using 100 squares, arrays and numberlines.

- Using a 100 square to find and discuss patterns when counting.

- Children draw dots to represent arrays.

- Number lines are used to show multiplication as repeat addition.

Abstract

 addition and multiplication and division facts.- Children recall \& use multiplication facts for 2, $5 \& 10$ tables, including recognising odd and even numbers.
- Children use abstract number lines to solve multiplication problems.

Multiply two-digit and three-digit numbers by a one-digit number using formal written

$\begin{array}{r}2268 \\ \times \quad 8 \\ \hline 1824\end{array}$
\rightarrow

Carrying above to avoid confusion when multiplying 3 digit by 2 digit

Multiplication of fractions

Year 5

- Multiply proper fractions by whole number,
- Begin with repeated addition using models
$\frac{1}{6} \times 4=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}$
- Using single bar model

Multiply mixed umbers by whole number

$$
2 \frac{2}{3} \times 4
$$

using repeated additon

$$
2 \frac{2}{3} \times 4=2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}=8 \frac{8}{3}=10 \frac{2}{3}
$$

- By partitioning

$$
\begin{aligned}
& \square \square \square \square \\
& \square \square \square \frac{3}{4} \times 3=\frac{9}{4}=2 \frac{1}{4} \\
& \square \square \square \square \frac{3}{4}=8 \frac{1}{4}
\end{aligned}
$$

- By converting to an improper fraction

$$
1 \frac{5}{6} \times 3=\frac{11}{6} \times \beta=\frac{33}{6}=5 \frac{3}{6}=5 \frac{1}{2}
$$

Year 6

Multiply simple pairs of proper fractions, writing the answer in its simplest form [for example 1/4 $\times 1 / 2=1 / 8$]

$$
2 / 3 \times 3 / 4
$$

First, separate the square into 3 equal parts vertically and shade 2 parts to
indicate $\frac{2}{3}$

Now separate the square into 4 equal parts horizontally and shade 3 of them to show $\frac{3}{4}$

Since we are looking for $\frac{2}{3} \times \frac{3}{4}$ or $\frac{2}{3}$ of $\frac{3}{4}$, we get 6 out of 12 parts that are double-shaded and represent $\frac{2}{3} \times \frac{3}{4}$

Conceptual variation; different ways to ask children to solve 6×23

Written Division methods using a CONCRETE, PICTORIAL and ABSTRACT approach Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.		
Foundation 2		
Concrete	Pictorial	Abstract
Children solve problems involving simple halving and sharing - In practical activities, using objects they will begin to use division vocabulary - groups, sharing. 'You have 6 buns and give your friend half. How many do you each have?' They will record pictorially.	Children solve problems involving simple halving and sharing - Using pictures and through discussion they will begin to use division vocabulary - groups, sharing.	Children solve problems involving simple halving and sharing - Through discussion they will begin to use division vocabulary - groups, sharing.

Written DIVISION methods using a CONCRETE, PICTORIAL and ABSTRACT approach
 Key language: share, group, divide, divided by, half.

Year 1		
Concrete	Pictorial	Abstract
Children solve problems with division using concrete objects as used in foundation stage 2. Children solve problems involving division using concrete objects. - Through practical activities children will find half and then a quarter by sharing. 4 cakes shared between 2 people. How many do they get each? Children use objects to group and share amounts to develop an understanding of division in a practical sense. - Sharing - Children will have practical opportunities to share out by giving one to each plate. E.g. 6 sweets are shared between 2 people. How many do they have each? - Grouping - Children will have practical opportunities to put objects into groups of a specific number.	Children solve problems with addition using pictorial representations as used in foundation stage 2. Children solve problems involving division using pictorial representations. Children will use jottings to record both sharing equally and grouping. Then they begin to use the \div sign to record their division problems. $6 \div 2=3$	Children count on and back from different numbers in 1 s and then in multiples of 2,5 and 10 .

E.g. There are 6 sweets. How many people can have 2 sweets each?

If you have 15 cubes. How many towers of 3 cubes can you make?'

Written DIVISION methods using a CONCRETE, PICTORIAL and ABSTRACT approach

Key language: share, group, divide, divided by, half.

Concrete
Children solve problems with division using
as used in foundation stage 2 and Year 1 .
Children find a half, a quarter, a third and th
shapes, objects and numbers.
- Using and sharing objects

Children continue to use grouping and sharing for division using practical apparatus.

- Division facts - Children count regularly, on and back, in steps of 2,5 and 10 using concrete objects.

Year 2

Children solve problems with addition using pictorial representations as used odd in foundation stage 2 and Year 1.

- Arrays - Children will be introduced to arrays as a pictorial representation to show division.

$15 \div 3=5$

$$
15 \div 5=3
$$

There are 3 groups of 5
E.g. 15 pencils shared between 3 pots, how many in each pot?

- Repeat subtraction - Children recognise division as repeat subtraction. Using a numberline children start with the total amount to be divided (the first number). They then jump back in steps of the divisor (the second number) until they reach 0 . By counting the number of steps taken we find the answer.

$$
15 \div 3=5
$$

NB. We always count backwards below the line for subtraction.

Abstract

Children recognise odd and even numbers and recall division facts for the 2,5 and 10 multiplication tables.
E.g. Sort these numbers into and even $15,27,34,75,82$

- Mental methods, and division facts Children count regularly, on and back, in steps of 2,5 and 10.

Children calculate mathematical statements for division within the multiplication tables Of 2,5 and 10 and write them using division ((\div) and equals ($=$) signs.
$20 \div 5=$

Children partition tens and ones with larger numbers to find half, a quarter and three quarters

Find half of 48
 $$
48=40+8
$$

Half of $40=20$
Half of $8=4$
Half of $48=20+4=24$

Written DIVISION methods using a CONCRETE, PICTORIAL and ABSTRACT approach

Key language: share, group, divide, divided by, half.

Year 3/ Year 4

Division with a remainder-using lollipop sticks, times tables facts and repeated subtraction.
2 d divided by 1 d using base 10 or place value counters

Short division (up to 3 digits by 1 digit- concrete and pictorial) See Y5 starting with 2 digit numbers beyond table facts

